Adam Saltz speaks on an annular refinement of the transverse element in Khovanov homology

Intended Audience: Research mathematicians, professors of mathematics, graduate students in mathematics, and advanced undergraduate students in mathematics.

In this 1 hour episode, we see a presentation by Adam Saltz, a mathematician and graduate student at Boston College, on a new invariant of transverse knots in links coming from Khovanov homology.

In the talk, Adam discusses some of the details contained in his paper with Diana Hubbard, An annular refinement of the transverse element in Khovanov homology. Here is the abstract to their paper:

We construct a braid conjugacy class invariant κ by refining Plamenevskaya’s transverse element ψ in Khovanov homology via the annular grading. While κ is not an invariant of transverse links, it distinguishes some braids whose closures share the same classical invariants but are not transversely isotopic. Using κ we construct an obstruction to negative destabilization (stronger than ψ) and a solution to the word problem in braid groups. Also, κ is a lower bound on the length of the spectral sequence from annular Khovanov homology to Khovanov homology, and we obtain concrete examples in which this spectral sequence does not collapse immediately. In addition, we study these constructions in reduced Khovanov homology and illustrate that the two reduced versions are fundamentally different with respect to the annular filtration.

This video and paper are aimed at mathematicians, graduate students and undergraduates with lots of experience in topology.  However, high school students who think they are potential math geniuses may still enjoy looking at it to see what advanced theorems and proofs look like.

As always, comments are welcome!

Adam Saltz

CHANNEL: Geometry and Topology Today
© 2015 Scott Baldridge and David Shea Vela-Vick
Supported by NSF CAREER grant DMS-0748636 and NSF grant DMS-1249708

Advertisements

About Scott Baldridge

Distinguished Professor of Mathematics, LSU. Geometric topologist: gauge theory, exotic 4-manifolds, knot theory. Author: Elementary Mathematics for Teachers.
Video | This entry was posted in Geometry and Topology Today and tagged , , , , , , , , , , , . Bookmark the permalink.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s